زاويه داخله دو قائمه نبود بل مساوى دو قائمه بود هم متوازى است پس حكم اولى بر آن دو خط باشد كه مشترك بود ميان اين دو صورت يعنى ميان دو داخله يا دو قائمه بود يا مساوى دو قائمه و چون چنين بود حكم اول نه بر يك يك شخص بود از اين موضوع و نه اولى بر آن موضوع پس نه مقول على الكل بود و نه اولى و ديگر آنك موضوع را چند نوع بود و حكمى عام كه بر او بايد كرد بر يك يك نوع كنيم تا از روى ضرورت يا بغلط و حكم بر هر نوعى جزوى بود و كلى پندارند چنانك در وجه اول گفتيم اما وجه ضرورت چند چيز بود ا آنك كلى را اسمى مطابق نبود و عبارت از او بايراد اسامى انواع توان كرد ب آنك هر يكى از انواع موضوع صناعتى برهانى بود بخلاف كلى پس حكم بر او خارج افتد از آن صناعات و صناعتى نبود كه آن حكم داخل افتد در وى ج آنك برهان بر كلى دشوار بود و بر انواعش آسان د آنك تصور كلى از تخيل دور بود و تصور يكيك نوع نزديك و از شان آن علم بود استعانت عقل به خيال مثلا در هندسه گوئيم مقادير متناسبه بعد از ابدال متناسب بود و در اعداد همچنين بيان كنيم و هر يكى از اين دو حكم جزوى باشد چه اين حكم از لواحق كم مطلق است كه جنس است و چون از آن غافل باشند در هر يك كلى پندارند و اين مثال هر چهار وجه ضرورت مذكور را شامل است چه اين جنس را در لغت اسمى مطابق نيست و خارج است از موضوع هر دو صناعت و موضوع صناعتى مفرد نيست و برهان در هندسه باضعاف و در حساب باجزاء آسان است و ايراد بر هياتى شامل هر دو دشوار و تصور يك يك نوع بمعاونت تخيل آسان است و تصور كلى كه خيال در او معاون نيست بخلاف آن و حكم مقدار و انواعش كه خط و سطح و جسم و زمانند در عسر و سهولت تخيل همين بود و اما وجه غلط چنان بود كه حكمى كه در كلى طلب بايد كرد بغلط در يك يك نوع طلبند پس در هر يكى كه يافته شود كلى پندارند و نبود مثلا كسى حكم زواياى مثلث در مثلث مطلق طلب